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TECHNICAL SUMMARY

An important initial task in the time domain analysis of
observed yield bias at NTS is the determination of a reliable

seismic source function of underground nuclear explosions.

This function needs to be appropriate for local, regional, and
teleseismic observational distances. Given such a source des-
cription we may then proceed to separate the effects of anelastic
dissipation, commonly characterized by the parameter t* (the

ratio of observed travel-time to apparent attenuation), receiver
structure, and crustal structure in the near-source environment.
Without an adequate source parameterization, the source character-
istics and those propagational factors will be hopelessly inter-
twined.

This technical report discusses the determination of an
accurate source description for Jorum and the results are extended
to the teleseismic observations of Handley. This source function
has then been used to estimate local crustal structure and indi-
cate important areas of further study and geophysical exploration,
and, finally to help examine amplitude and apparent yield vari-
ations in the Pahute Mesa area of the Nevada Test Site.

The basic data set used to model the source were the strong
motion seismograms collected by Peppin (1964). These seismograms
were recorded at about 8 kilometers from the test sites. This

distance is far enough removed that the influence of highly non-
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linear near-field effects such as spall and minor movement along
fractures do not dominate the record but yet close enough that
clear signals were recorded. Moreover, at this distance the
initial seismic energy represents diving rays and hence is suit-
able for comparison with more distant regional and teleseismic
observations. Using a modified Von Seggern and Blandford (1972)
source representation, and including near-field terms, it has
been possible to obtain source functions which not only accurately
model close-in records but also match teleseismic observations.
Having once defined the explosion source description, it is a
straightforward task to determine the effective t* for teleseismic
observations without the usual ambiguity of what are the source
influences as opposed to the anelastic effects. For WWSSN short
period observations of these events, we obtain an average t* of
about 1.3 for compressional waves with a scatter of about +0.2.
There are systematic azimuthal trends in the observed t* values
which are not strongly correlated with the Silent Canyon caldera
but may be correlated with part of the central Rocky Mountains.
It is not possible at this time to rule out systematic receiver
function biases as the cause of the amplitude variations. A
principal, although for present purposes not critical, limitation
on the source function determination made in this study is the
uncertainties in the precise crustal structure and seismological
properties along the 8 km paths between the events and the strong

motion sites. Since these uncertainties directly affect the
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resolved source function (as described in detail within this rep

this structure needs to be more precisely defined in our efforts

to reduce the observecd yield variations at NTS.
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INTRODUCTION

In recent years, there have been a number of attempts at
comparing local strong motion data with teleseismic observa-
tions. In the case of explosions, investigators have examined
the frequency content of short period P waves to measure atten-
uation (for example, Fraiser and Filson, 1972). They estimate
t* to be about (.5) where tg = %a= (Travel time of compressional
(a) wave /Qu). If t* is known along some ray path, then a
convolution operator A(r,t*) can be constructed to correct
a seismic pulse for attenuation [Carpenter et al. (1967).

In the case of earthquake data, occasionally both long
and short period P and S waves at teleseismic distances and
well-recorded local S waves are available. The long period
pulses are easily modeled synthetically, see, for example, Bur-
dick and Mellman (1976). Their results for the Borrego Moun-
tain earthquake indicate that the direct P wave actually con-
tains P, pP and sP, with the latter phase dominating. Modeling
the phases sP and sS, Burdick (1978) estimated tg to be 5.2.
Heaton and Helmberger (1977) modeled the strong motion data
and found that Burdick's teleseismic description of Borrego
was compatible with the local observations.

In general, comparing seismic pulses at various locations
produced by earthquakes with the intent of determining Q is
particularly difficult because of source finiteness and associ-
ated directivity effects. The complex radiation pattern associ-
ated with earthquakes introduces large uncertainties in com-

paring waveforms from various stations. With the goal of




avoiding this problem, we have reworked some of the best data
available by comparing observations made near large nuclear
explosions with teleseismic measurements of short and long

period P waves.




NEAR FIELD STUDIES

The megaton events considered in this study were located
on the Pahute Mesa of the Nevada Test Site, (NTS), see Figure 1.
The near field data described by Peppin (1974), was recorded
at several azimuths at a distance of 8 km. The local data
represent a reversed profile with Jorum shooting west and
Handley towards the east. Complete recordings made at this
distance are generally easier to obtain since the violent
motions associated with some very near field phenomena are
absent. The results for the Jorum experiment are given in
Figure 2; however, the reverse Handley experiment was not as
successful. The records are similar to those in Figure 2, but
are slightly clipped on the first down swing, see Peppin (1974).

The energy in the first arrivals at stations 4, 5, and 6,
Figure 2, is concentrated on the vertical component, but, as
time progresses, shifts to the radial. Also, note that many
of the later arrivals are not particularly coherent from site
to site, as can be seen by comparing any individual trace with
the average stack shown on the bottom of Figure 2. These
observed features can be explained by an initial downgoing P
wave, with an incidence angle at the stations of about 30°
yielding a radial to vertical ratio of about .4. The later
arrivals travel in the slower surface layers. These later
arrivals probably contain abundant information about the source-
surface interaction, slapdown, tectonic release, slippage

along cracks, and other complex phenomena. We will concentrate
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Figure 1: Map of NTS showing accelerometer locations

for the Jorum and Handley tests, modified from

Peppin (1974).
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bottom traces are the stacked averages of the vertical
and radial components, respectively.
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our efforts in this paper on the first-cycle of motion which
we interpret as representative of the dominant out-going
signals. For modeling purposes, it is convenient to work with
the integral of these acceleration measurements as displayed in
Figure 3. We have not removed the linear drift that occurs in
this operation because we will only work with the first cycle.
Furthermore, the instruments are sufficiently broad-band that
the initial velocity pulse can be treated as the true ground
motion [McEvilly (personal communication)]. Thus, the first
second of the average vertical velocity component along with
the corresponding teleseismic observations, Figure 4, will be

our prime data set for determining t*.

e ———————————————
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Figure 4: Station location and P-waves obtained from the
WWSSN Network. Absolute amplitude data are listed in

Table 1.




NEAR FIELD MODELING TECHNIQUES

The techniques for modeling telescismic explosion wave-
forms have been discussed at length by numerous authors with
one of the latest expositions given by Burdick and Helmberger
(1979). Assuming an elastic layered earth with t* = 1, they
find that large overshoots of at least 2 to 1 in the reduced
displacement potential, RDP, will explain most of the short and
long period observations of both the Soviet and U.S. explosions.
The Burdick and Helmberger study used the RDP proposed by Von
Seggern and Blandford (1972) expressed by

vee) = v [1 - e + ke - BRDY) (1)

where y(») is the source strength, K scales inversely as cube
root of the yield, and B is the overshoot constant. With

B > 2 the data is well modeled without adding a slapdown phase
or related phenomena. It shouldbe noted that, since we are
treating the phase pP as an elastic interaction, the combined
radiation of P plus pP is a simple parameterization and that

any combination of RDP's with a non-elastic reflection of pP
which yields an equivalent overshoot behavior will be acceptable
in fitting the teleseismic data.

The displacement potential is given by

#(R,t) = -y(t)/R . (2)
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and the displacement by

D(R,t) = y(t)/R* + (1/Ra)(dy(t)/dt), (3)
where R is the radial distance and o is the velocity. 1In terms
of generalized ray theory, the vertical displacement for a

E layered earth becomes

D(r,z,t) = - (dy/dt * dS/dt) (4)

where the step response of the model is given by

sy =£1 [/% * 3 ray% (5)

see Helmberger and Harkrider (1972). The velocity component

can be written as

| V() = - £ (dy/de * ds/dt) (6)
= - (d%y/dt? * ds/dt) (7)
= - (@y/de> * ) (8)
= - & (@%y/at? * 5) (9

Mathematically (6) through (9) are equivalent, but.numerically

e —————————

oot e e ————— -
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and geophysically the order of operations can effect the results.
At teleseismic distances, the delta response of the earth, dS/dt,
is reasonably well known and thus, expression (6) is commonly
used. For this reason, one does not worry about the fact that
(dzw/dtz) of the expression (1) is ill-behaved. In our present
situation, we do not know the local structure at Jorum particu-
larly well and, consequently, our knowledge of S(t) at the short
periods is lacking and the operation (dS/dt) should be avoided.
We can accomplish this by demanding more of y(t) or by adding
another term in the original Haskell (1967) description,

namely,

pee) = v [ e KE@ + (ke) + 1/2(ke)?

- B(Kc)%} (10)

and applying (9) in modeling the velocity pulse displayed in
Figure 3. To compute S(t) we need to have an accurate layered

model of the source region, which we consider next.




LOCAL CRUSTAL MODEL
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A detailed velocity model of the Silent Canyon Caldera and

2 acoustic log obtained in a shallow borehole in the
tuff at the NTS [Keller (1960)]. The depth to the
this unit coincides with the position of the static
[Springer and Kinnaman (1971)]. The velocities of
9 two units (3.4 and 3.8 km/sec) are consistent with

decrease in the tuff content with increasing depth

sections of the caldera [Spence (1974), Diment and

others (1969)].

: Pahute Mesa would be rather complex. With increasing depth,
E the lithologic units grade from bedded and ash flow tuffs to
interbedded tuffs and lava flows to lavas and intrusives with
intermediate composition [Orkild and others (1969)]. We have
attempted to represent this complex with a four layer model,

9 Figure 5. The surficial layer is an average velocity from an

Oak-Spring
bottom of
water table
the next
both a

and the

report by Spence (1974) of an average caldera velocity of 3.6 km/
sec. Finally, the velocity of the half space is intermediate
between the velocity of the pre-Cenozoic rocks that surround

’ Pahute Mesa and the lavas and intrusions comprising the lower

other (1960)].

Depth to the top of this layer is approximately located from

geologic sections constructed from borehole data [Orkild and

T T
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Figure 5: Crustal models constructed for the Pahute Mesa
test site. The hard top model referred to in the text
assumes that By = 82 = 1.2 km/sec., i.e. no change in

shear velocity above a depth of 1.5 km.
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MODELING THE STRONG MOTION RECORDS

Synthetic velocity waveforms based on the above model
for a range of distances are presented in Figure 6. A
slightly smoothed (dS/dt) is included to display the roughness
of the response caused by the layering. Note that the phase
pP, which becomes a strong feature beyond about 5 km, inter-
acts with the overshoot feature of the source. 1In these syn-
thetics we have included only generalized rays that arrive
within the first second of motion. In Figure 7 we compare
various assumed K and B values with the observed vertical
waveshape in overlay form. Most of these fits could be con-
sidered adequate except, perhaps, for (B = 2, K = 4), which
is somewhat too broad. It should be noted that the ratio of
radial to vertical motions shown in Figure 6 is about .45,
whereas the average for the data is somewhat lower, with con-
siderable variation for the individual recordings, see Figure 3.
Also, note that when the downswing is particularly large,
station 6 on Figure 3, we obtain a relatively low ratio of
radial to vertical motion. Thus, to gain some insight, we ran
several additional models with the results displayed in the left
two columns of Figure 8. Since the radial shapes were quite
similar to the verticals, we have plotted only the vertical
component and the amplitude ratio. First, we note that increas-
ing the shear velocity in the surface layer (hard top) greatly
affects the ratio as well as changes the strength of pP. When

the surface is soft (low shear velocity) we obtain a strong pP

T
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because of the weak conversion to pS and, secondly, a soft
surface has a strong effect on the receiver function. Thus,
a strong pP is compatible with a small ratio of radial to
vertical and it appears that Figure 3 can be interpreted in
this fashion. Another interesting feature that is common to
the waveshapes in Figure 3 is a relatively broader upswing on
the radial relative to vertical components. This feature is
not particularly important to our objective, but we have pro-
duced models that give this effect by including a thin soft
layer at the surface and including rays that convert from P
to SV near the receiver. The radial component is strongly
affected by these types of conversions, whereas the vertical
component is rather insensitive.

To test the sensitivity of our synthetics to the choice
of model parameters, Green's functions for a second velocity
model were also computed. The new model replaces the lower
three layers with a linear gradient, Figure 5. The computed
Green's functions are shown in the right side of Figure 8.
Although the shapes of the new response functions are slightly
different, the convolution with the longer period source func-
tion produces waveforms and amplitude ratios that are very
comparable with the discrete model.

A problem that might affect our results would be the
presence of thin high velocity layers above the source. Such
a structure could produce tunnelling effects and strongly

reduce the shorter period amplitudes. Fortunately, at 4= 8 km

—— e~ - A
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the turning velocity approaches 3.8 km/sec and this velocity
should be sufficiently high to avoid that problem (see Mellman
and Helmberger, 1974). 1If significant high velocity layers
are actually present above the source, then the source strength
would be underestimated and the teleseismic t* would be slightly
overestimated.

In conclusion, the crustal model below the shot point
down to about 4 km controls the amplitude of the synthetics.
The delay time of pP is consistent with the model given in
Figure 5. A smooth gradient model gives about the same
results. Thus, we can determine wo(K,B) by simply scaling
the synthetic given in Figure 7 to the observed waveforms.
Assuming (K = 5), we obtain: wo(S,l) - 3.1, wO(S,Z) - 1.7,

and wo(5.3) 1.2 all times 1011 cm3_ Next, we will compare

the teleseismic waveshapes and amplitudes with these local

field results.

e ST % N T




TLELSEISMIC RESULTS: t*

The amplitudes of the teleseismic observations, Table 1,
show considerable variation. The observed amplitudes vary
smoothly with azimuth, Figure 9. The station geometry imposes
a strong correlation between azimuth and distance and, hence,
a plot of amplitude vs. distance would be a relatively smooth
curve where the most distant stations report the largest
amplitudes. The observed azimuthal amplitude pattern could
be the result of one or all of three mechanisms: 1) strong
azimuthal radiation pattern imposed by structure in the source
region, 2) effective amplification by the receiver structure
for the island stations in the west and northwest azimuths,
and 3) lateral variations in t¥*.

The first mechanism is easily tested by comparing the
amplitude behavior of several other events. Figure 9 shows
the amplitude data for Jorum, Greeley, !'oxcar, Benham and
Halfbeak. The absolute amplitude levels for all five data
sets have been simultaneously adjusted in order to minimize
scatter introduced by varying source strength. These tests
were located throughout the Silent Canyon caldera. All five
events show a consistent azimuthal trend. Figure 10 shows
the waveforms and amplitude ratios for Jorum and Handley. The
Handley test was located a few kilometers outside of the
boundary faults associated with the caldera. Note that the
waveforms are very consistent between these two tests and

that the amplitude ratio is stable. We conclude frbm these
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AZ

(degrees)

71.
70.
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67.
258.
80.
10.
5.
28.
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C. Amp.
(mp)

823
782
1142
511
1298
1029
235
860
548
645
2131
399
980
507
639
1352
491
799
1779
1521
1151
1870
2021
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Figure 10: Comparison of the observed teleseismic waveforms

and amplitudes for the events Handley and Jorum.
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data that source structure is not producing the amplitude
anomaly.

The question of systematic bias introduced by receiver
structure is difficult to assess on a world wide basis at this
stage of study. Short period records can show strong azimuthal
patterns as discussed by Helmberger and Wiggins (1971) and Aki
(1973) and others. Based on the geology of many of the island
stations, significant waveform distortion would not be too sur-
prising. This may in part explain the azimuthal pattern in
Figure 9. Fortunately, the stations in the United States have

been well studied by Butler (1979) and the east coast stations

appear remarkably transparent. Some of the recordings from these

stations for the Jorum and Handley events are displayed in
Figure 11. The long period observations are quite small on
the actual records, whereas the short period observations are
nearly off scale. Included at the bottom of Figure 11 are

the best-fitting short and long period synthetics we could
produce by varying t*. In generating these responses we used
the crustal model at the source given in Figure 5 with the
velocity below the 4.4 km/sec layer set at 5.1 km/sec. This
is also the velocity assumed for the receiver halfspace model.
Variations in K and B were not particularly effectual in
changing the short period amplitudes because changes in over-
shoot (B) effect the source strength (wo) determination. That
is, increasing the overshoot makes the short period synthetics

larger with constant wo' but the source level is effectively

Yy AT - U e (g P e e 1
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Table 2. Synthetic Teleseismic Amplitudes

K-5 Ampl (mu) (SPZ/LPZ)

B=T B=2 "B=3 B=1 B=2 B=3
t*

.8 3145 3162 3153 .81 .84 .84
.9 2520 2507 2529 .13 .76 .76
1.0 2040 2028 2012 .70 .68 .68
1.1 1640 1643 1658 .62 52 .63
1.2 1351 1350 1362 .56 .56 e ¥
1.3 1077 1084 1101 30 <30 % |
1.4 898 902 913 .45 .46 &7
1.5 144 750 768 41 .42 .43
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Figure 11: Comparison of the east coast observed

waveforms with the synthetic seismograms,

assuming t* = 1.3.
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smaller because of a compensating scale change required to
fit the local amplitudes. Examples of these trade-offs are

listed in Table 2 (K =5, B =1,2,3). These synthetic tele-

seismic amplitudes, listed for a range of t* values, can be

compared directly with the corrected observed amplitudes in

A e
PRVF S e

Table 1.

The average corrected amplitude for all short period

; observations is 1024 mu. This corresponds to a t* of 1.3,

which is significantly larger than previous determination.

-

The systematic azimuthal trend in amplitudes shown in Figure 9
can be interpreted as lateral variations in t*. If the entire
anomaly is accounted for in this manner, then t* varies from
} about 1.5 for northeastern azimuths to 1.1 for northwestern.

The average t* of 1.3 obtained in this study is somewhat

larger than that reported by Bache, et. al. (1975). Preliminary

results from a similar study of Piledriver, using very near-

SR ERh e b e e

field velocity time histories, indicates a t* of 1.3. These
. results are compatible with the Jorum study. The teleseismic
source strengths, calculated from the near-field Piledriver

data are a factor of two larger than the synthetic far-field

WO T PP N T BT RRREREw .,

pulse generated from the finite difference calculations of 83 h

(1975) and used in the previous estimates of t*. Because of
this apparent underestimation of the source strength, the attenu-

ation required to bring the calculated amplitudes into agreement

with the data was significantly smaller. This discrepancy in source

R T T T ISR TR TN

SRR o= v
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strength exactly accounts for the t* of 1.05 found by Bache,
et. al. (1973).

With the present data set it is impossible to uniquely
differentiate real lateral variation in t* from apparent
variations introduced by systematic bias in receiver struc-
tures. In a recent study by Butler (1979) of amplitudes
observed at WWSSN stations in the United States from Soviet
nuclear tests, it was found that east coast stations do not
show anomalously small amplitudes. However, the stations
ALQ and GOL are depressed in amplitude by a factor of 2 to 3.
The same study found a similar result from earthquake sources
in the Kuriles. These observations suggest as a hypothesis
that the upper mantle along the ray paths near the stations
ALQ and GOL is typified by low Q. Figure 12 is a gnomic
projection showing the Soviet test sites and the U.S. WWSSN
stations. Dashed lines from stations ALQ and GOL show the
ray paths that are attenuated. Also shown on this figure is
the range of azimuths from NTS that have been characterized
in this study by low amplitudes and large t* (~1.5). It is
very intriguiag that the two studies are at least consistent
with a low Q region in the upper mantle beneath the central
Rocky Mountains. This model is clearly not unique and addi-
tional studies of the azimuthal receiver function character-
istics of world wide stations will be required to more fully

understand the origin of the azimuthal amplitude anomaly

observed at the NTS.
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SEMI E

KAZ
*

NTS

— —

Figure 12: A gnomic projection (all great circles are straight
lines) showing the NTS, WWSSN stations of the United States,
and the Soviet Union test sites. Butler (1979) has observed
a large seismic attenuation at the stations GO7. and ALQ,

relative to other U.S. stations from sources in both the
Soviet Union and the Kuriles (dotted azimuths). World
wide stations in a northeast azimuth from NTS are signifi-

i cantly reduced in amplitudes relative to other azimuths.
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